China Best Sales Cast 4140 Tooth Ring/Drum Gear for Cement Mill worm gearbox

Product Description

Product Parameters

The material is low carbon or alloy steel,such as ZG270-500,ZG42CrMo,ZG35Mn and so on.
 

Material:ZG25CrNiMo

Steel Grade Chemical Composition %
C Si Mn Cr Ni Mo S P
ZG25CrNiMo 0.25-0.30 0.20-0.40 0.70-0.90 0.40-0.70 0.40-0.70 0.15-0.25 <=0.571 <=0.571
ZG30CrMo 0.26-0.33 0.17-0.37 0.40-0.70 0.80-1.10 0.15-0.25 <=0.571 <=0.571
ZG35CrMo 0.32-0.40 0.17-0.37 0.40-0.70 0.80-1.10 0.15-0.25 <=0.571 <=0.571

Standard

 Yield Strength

Rp0.2  /MPa

Tensile Strength

Rb / MPa

Elogation

A / %

Reduction of Area

Z/ %

60K ≥414 ≥586 ≥18 ≥35
75K ≥517 ≥655 ≥18 ≥35
80K 585-660 ≥725 ≥18 ≥35

 

Material C Si Mn P S
ZG270-500 0.32-0.40 0.20-0.52 0.45-0.90 ≤0.035 ≤0.035

 

Material C Si Mn P S Cr Mo
ZG42CrMo 0.38-0.43 0.15-0.35 0.75-1.00 ≤0.035 ≤0.035 0.80-1.10 0.15-0.25

 

Material C Si Mn P S
ZG35Mn 0.30-0.40 0.60-0.80 1.10-1.40 ≤0.035 ≤0.035

It is up to customers’ requirement.
 

Item Standard
Casting Material EN 15713/EN 10571/BS 3100/DIN 1681/DIN17205
Casting Tolerance in Blank ISO 8062 CT 13
Size Tolerance DIN ISO 2768m
NDT ASTM A609 Level 2 or 3 /EN 12680/ASTM E94 Level 2 or 3
Heat Treatment Normalizing+Tempering+Quenching
Hardness As Required

 

Company Profile

Haian CZPT Casting Co.,Ltd. is established in 2003 in CZPT Town.

In 2007,we moved our factory to Sunzhuang town and now we can supply bigger steel castings with max. weight 45 tons.

In 2011,we built a new sand mold maiking workshop with 120 tons refinining CZPT and the max. weight can be 120 tons.

In 2013,we paid more attenion on the castings for shipbuilding and started to supply marine castings for most of domestic famous shipyards.

From 2013 to 2571,we bought more and more machines to strengthen our ability from rough machining to finished machining.

In 2571,we built another new sand mold making workshop for the quick development of market requirement.

Now we monthly supply 6000 tons different castings for different customers of different industry,such as cement mill,shipubuilding,petroleum machinery,rolling mill,forging press and so on.

Prodcution Process

1)Pattern making

We have our own wooden pattern making workshop.
But our company is always busy,
we also have around 10 sub-contractors for pattern making.
They help us for the pattern but will be inspected according to our rules.
We will record for every pattern inspection.

2)Silica or chorme sand cores
We have around 80 technicans for sand core making which is divided into around 10 teams.
Most of the technicans has more than 10 years’ experience.
Most of the sand core is made by silica sand with common sand inside of it.
The common sand will be used repeatly.
For some important position,such as R corner,we will use chorme ore sand.
The outside of the sand core,we will do the painting,burn and clean it.
We will assemble diffrent sand cores together and wait for pouring.

3)Melting and Pouring

We always do the melting after mid-night for cheaper electric charge.
And we normally do pouring in the early morning.

No. Equipment Name Quantity(Set)
1 25 tons Electrical Arc Furnace 1
2 50 tons Intermediate Frequency Furnace 2
3 120 tons Refining Furnace 1
4 120 tons VD Furnace 2

Before and after pouring,we will do the chemical compostion test.

4)Cooling

After pouring,we will wait for different time for cooling according to casting’s weight.

Item Weight in blank(Metric Tons) Cooling Time(Hour)
1 <25 48
2 >25-40 72
3 >40-55 96
4 >55-72 120
5 >72-96 144
6 >96-115 168
7 >115 192

We have our experience and rules for cooling time.
After cooling,we will shake the casting out of the steel boxes and clean them.
5)Heat Treatment
Normalizing will be 3 days while tempering is 4 days.
We have around 10 sets of heat treatment furnaces.
The biggest 1 is 12m*9m*6m.
It is also the biggest size of castings we can make.

After heat treatment,we will do the mechanical property test.
Our ordinary test block’s size is 230mm*70mm*50mm.
One casting part will min. have 3 pcs test blocks.
We have our testing center and it is approved by CNAS. 
6)Draw the line and do the first rough machining
We can do the machining from rough to finished machining.

7)NDT after rough machining

8)Welding repair
We have rich experience for making support rollers and kiln tyres,
then there is no welding for the outside working position.
This is our special technology.
Every year we supply around 400pcs kiln tyres,930pcs support roller,170 sets gear( in 2 halves).
But for some other castings,if we do the welding repair,
we will do the tempering for stress relief later.
All of our welders have the SGS certficate.

9)Shot blasting and grinding
We have a robert grinder.
We have a 120 tons rotary shot blasting table. 

10)Final machining
We have a lot of vertical lathes from 2.5m to 10m.

 

Certifications

We get approval from CNAS for our laboratory.
We also have 9 class certificate,such as ABS,DNV,NK,RINA,KR,CCS,BV and so on.

 

Packaging & Shipping

We supply a lot of castings for cement mill,rolling mill,shipbuilding and so on.

We can do the packing according to our rules or according to customers’ requirement.

 

After Sales Service

Normally there is a 12 months quality warantty.

We do at least 3 times NDT:after rough,semi-finished and finished machining.

And also the customer will do the witness during or after finished machining.

If there is also any problem when you receive the castings,
please send us photos and detailed defects,
we will negotiate with you and make a compensation.

A third party inspection before shipment is welcomed.

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Type: Chemical Hardening Sand
Casting Method: Directional Crystallization
Sand Core Type: Sodium Silicate Sand Core
Samples:
US$ 20/kg
1 kg(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

ring gear

How do you choose the right size ring gear for your application?

Choosing the right size ring gear for a specific application involves considering several factors related to the gear system, load requirements, space constraints, and performance objectives. Here’s a detailed explanation of the process involved in selecting the appropriate size ring gear:

  1. Determine the Gear System Parameters: Understand the specific requirements of the gear system in which the ring gear will be used. This includes identifying the input power, desired output speed, torque requirements, and operating conditions such as temperature, vibration, and lubrication.
  2. Calculate Gear Ratios: Determine the required gear ratios for the gear system. Gear ratios define the relationship between the rotational speeds and torques of the driving and driven gears. By knowing the desired gear ratios, you can calculate the appropriate size of the ring gear relative to the other gears in the system.
  3. Evaluate Load Capacity: Assess the load capacity needed for the application. Consider the maximum torque and radial loads that the ring gear will experience during operation. It’s crucial to select a ring gear that can handle the anticipated loads without excessive wear, deformation, or failure.
  4. Consider Space Limitations: Determine the available space for the ring gear within the application. Consider the overall dimensions, such as the outer diameter, inner diameter, and thickness of the ring gear. Ensure that the selected size fits within the designated space without interfering with other components or compromising the overall functionality of the system.
  5. Account for Manufacturing Considerations: Consider the manufacturability of the ring gear. Evaluate factors such as the feasibility of producing the required tooth profile, the availability of suitable materials, and the manufacturing capabilities of the supplier. It’s important to choose a size that can be efficiently manufactured while meeting the required quality standards.
  6. Consult Design Guidelines and Standards: Refer to industry design guidelines, standards, and specifications specific to the type of gear and application. These guidelines provide recommendations and formulas for calculating gear sizes based on factors such as tooth strength, contact stress, and bending stress. Adhering to recognized standards ensures that the selected ring gear size is appropriate for the intended application.

It is often beneficial to consult with gear design engineers or industry experts to ensure the proper selection of the ring gear size. They can provide detailed analysis, simulation, and expertise in choosing the optimal size based on the specific requirements and constraints of the application.

By carefully considering these factors and following established design practices, you can choose the right size ring gear that will deliver reliable performance, efficient power transmission, and long-term durability for your application.

\ring gear

How do you prevent backlash and gear play in a ring gear mechanism?

Preventing backlash and gear play in a ring gear mechanism is crucial for ensuring accurate and precise operation. Here’s a detailed explanation of how to prevent backlash and gear play in a ring gear mechanism:

  • Precise Gear Design: The design of the ring gear and associated gears should be carefully engineered to minimize backlash. This involves selecting appropriate tooth profiles and gear geometry that promote proper meshing and minimize clearance between the gear teeth. The gear design should consider factors such as tooth thickness, pressure angle, and tooth contact ratio to achieve optimal gear meshing without excessive play.
  • Tight Manufacturing Tolerances: Close manufacturing tolerances are essential to reduce backlash in a ring gear mechanism. The gear components, including the ring gear and mating gears, should be produced with high precision to ensure accurate tooth dimensions and minimize any gaps or play between the gear teeth. Tight manufacturing tolerances help achieve a tighter meshing fit, reducing backlash and gear play.
  • Proper Gear Alignment: Accurate alignment of the ring gear and mating gears is crucial for minimizing backlash. The gears should be properly aligned along their axes to ensure precise engagement and minimize any misalignment that can contribute to play. Adequate alignment can be achieved through careful assembly techniques, such as using alignment fixtures, proper shimming, and precision measurement tools.
  • Preload or Pre-tension: Applying preload or pre-tension to the ring gear mechanism can help reduce backlash and gear play. Preload involves applying a slight compressive force or tension to eliminate any clearance or gaps between the gear teeth during operation. This can be achieved through various methods, such as using spring-loaded components, adjustable shims, or axial preloading devices.
  • Optimized Lubrication: Proper lubrication is essential for reducing friction and minimizing gear play. Lubricants with appropriate viscosity and film strength should be used to ensure smooth gear operation and reduce any unwanted movement or play between the gear teeth. Regular lubricant maintenance, such as monitoring oil levels and replenishing or replacing lubricants as needed, helps maintain optimal lubrication conditions and minimize backlash.
  • Mechanical Backlash Compensation: In some applications, mechanical compensation mechanisms can be employed to actively compensate for any residual backlash. These mechanisms can include systems with adjustable clearances, anti-backlash devices, or dual-gear arrangements that counteract the effects of backlash. Mechanical backlash compensation techniques can help maintain precise positioning and eliminate any undesired play in the gear mechanism.

By implementing these measures, it is possible to significantly reduce or eliminate backlash and gear play in a ring gear mechanism. Careful gear design, tight manufacturing tolerances, proper alignment, preload or pre-tension, optimized lubrication, and mechanical compensation techniques all play a role in ensuring accurate and precise operation of the ring gear mechanism.

ring gear

What industries commonly use ring gears?

Ring gears, also known as annular gears or internal gears, are utilized in various industries due to their unique characteristics and capabilities. Here’s a detailed explanation of the industries that commonly use ring gears:

  • Automotive Industry: Ring gears are extensively used in the automotive industry. They are a crucial component in automotive transmissions, differential systems, and steering mechanisms. Ring gears help transmit torque and rotational motion, enabling smooth shifting of gears and efficient power transfer in vehicles.
  • Aerospace Industry: The aerospace industry relies on ring gears for various applications. They are used in aircraft engines, landing gear systems, actuation mechanisms, and aerospace gearboxes. Ring gears provide reliable and precise motion control in critical aerospace systems.
  • Industrial Machinery: Ring gears find wide applications in industrial machinery, including heavy machinery, manufacturing equipment, and power generation systems. They are used in gearboxes, speed reducers, and other power transmission systems. Ring gears enable efficient torque transfer and motion control in industrial settings.
  • Robotics: Ring gears play a significant role in robotics and automation. They are employed in robotic joints, manipulator arms, and motion control systems. Ring gears provide precise and smooth rotation, allowing robots to perform intricate tasks with accuracy and repeatability.
  • Power Generation: Ring gears are utilized in power generation equipment such as wind turbines, hydroelectric generators, and steam turbines. They are part of the gearbox systems that convert the rotational motion of the turbine blades into electrical energy. Ring gears enable efficient power transmission and adaptability to varying load conditions.
  • Heavy Equipment and Construction: The heavy equipment and construction industry extensively use ring gears in equipment like excavators, cranes, loaders, and bulldozers. They are vital for the operation of the drivetrain and hydraulic systems, enabling controlled movement and power transfer in demanding construction environments.
  • Marine Industry: Ring gears are employed in various marine applications, including ship propulsion systems, marine winches, and steering mechanisms. They provide reliable torque transfer and motion control in marine vessels, ensuring efficient navigation and maneuverability.
  • Renewable Energy: Ring gears are utilized in renewable energy systems such as solar tracking systems and tidal power generation. They enable the precise tracking of solar panels and the efficient conversion of tidal forces into electrical energy.

The diverse applications of ring gears across these industries highlight their versatility and importance in various mechanical systems. The specific design, size, and material selection of ring gears may vary depending on the industry requirements and operating conditions.

China Best Sales Cast 4140 Tooth Ring/Drum Gear for Cement Mill worm gearboxChina Best Sales Cast 4140 Tooth Ring/Drum Gear for Cement Mill worm gearbox
editor by CX 2023-09-12

Tags:

Wenling Minghua GEAR CO., LTD

Minghua Gear is one of leading transmission gears, planetary gearboxes, worm reducer manufacturers, suppliers and exporters of mechanical products, We offer agricultural gears, industry gears and many other gear products.

Please contact us for details.

Mail: sales@ringgears.net

We specializing in the production of gears, reducers and gearboxes, and more.

We have exported our products to clients around the world and earned a good reputation because of our superior product quality and after-sales service.

We warmly welcome customers both at home and abroad to contact us to negotiate business, exchange information and cooperate with us.